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179.5 ° , respectively.  The  local  energy m i n i m a  were 
conf i rmed by the ca lcula ted  comple te  set o f  
h a r m o n i c  v ib ra t iona l  frequencies.  

The  a u t h o r  t h a n k s  Ass is tan t  Professor  Dr  C. 
K r a t k y ,  Ins t i tu te  o f  Physical  Chemis t ry ,  Univers i ty  
o f  Graz ,  for  the use o f  the d i f f rac tometer .  
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Abstrac t  

Single-crystal  X- ray  d i f f rac t ion  ( M o  K a  rad ia t ion ,  
A = 0.71073 A) was used to de te rmine  the s t ruc ture  
o f  the c o m m e n s u r a t e  inorgan ic  misfi t - layer  com-  
p o u n d  (BiSe),,oTaSe2, a0 = 12/11 = 1.09. The  struc- 

* Present address: Institute of Physics, Chinese Academy of 
Sciences, PO Box 603, Beijing 100080, People's Republic of China. 

0108-7681/93/020258-09506.00 

ture  is descr ibed as a (3 + 1)-dimensional  i n t e rg rowth  
c o m p o u n d  wi th  two subsystems and  with sym- 
met ry  accordi_n_g to the superspace  g roup  
P:Fm2m(ceo,O,O)l 11. The  TaSe2 subsys tem has al l  = 
3.421 (1), a~2 = 5.970 (1) and  a~3 = 24.341 (7)/~,  with 
subsys tem space g roup  Fm2m and  subsys tem super-  
space g roup  P:Fm2m(ao,O,O)l l l .  The BiSe subsystem 
has latt ice pa ramete r s  a~  = 3.135 (1), a~2 = 2.984 (1) 

© 1993 International Union of Crystallography 
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and a~3 = 12.174 (4)A, with subsystem space group 
Pm2m and subsystem superspace group 

• * P:Pm2m(ao  l,~,l)TT1 The (a~2,a~3) reciprocal-lattice 
plane is common to the two subsystem lattices, ~, = 
1, 2. Refinements on 1614 unique reflections con- 
verged smoothly to R = 0•050• The modulation was 
divided into a large block-wave occupational modu- 
lation describing the Bi/Se ordering and a relatively 
small displacement modulation. An interpretation 
is given of the effect of the latter using the 
bond-valence method. The structural features are 
compared to the incommensurate misfit-layer com- 
pounds, in relation to the inter-subsystem bonding• 

Introduction 

Inorganic misfit-layer compounds are characterized 
by the alternate stacking of two different types of 
layers (Makovicky & Hyde, 1981; Wiegers et al., 
1989)• The first type is a three-atom-thick layer of 
composition TX2 (X = S, Se; T = transition metal) 
and with a structure as is also found for the indivi- 
dual layers in either NbS2 or TiS2 (Nb and Ta are in 
a trigonal prismatic coordination by X; Ti, V and Cr 
are in a trigonal antiprismatic coordination)• The 
second type has a structure corresponding to a two- 
atom-thick (100) slice of a rock-salt-type structure. 
The composition is M X ,  with M a metal atom 
(Fig. 1). 

Each of the two sets of layers is ordered according 
to its own unit cell: A~ = {avl,a,,2,a,,3}, 1,' = 1, 2. The 
interaction between the two layer types makes the 
(a~,2,a,3) reciprocal-lattice plane common to the two 
unit cells• Generally, the periodicities along the 

2o~ 
(a) (b) 

Fig. 1. Projections along (a) the common a,2 axes and (b) the 
incommensurate a~ axes of the structure of the incommen- 
surate misfit-layer compound (LaS),.,4NbS2 (van Smaalen, 
1991c; Wiegers et al., 1990). 

colinear a~ axes are mutually incommensurate, thus 
making two unit cells necessary. 

A better description of these so-called incommen- 
surate intergrowth compounds is provided by the 
superspace formalism (Janner & Janssen, 1980; van 
Smaalen, 1989, 1991b, 1992a). The complete struc- 
ture is described in a (3 + d)-dimensional space, with 
the number of dimensions equal to the number of 
independent reciprocal vectors; here d = 1. The sym- 
metry is given by a single (3 + d)-dimensional space 
group, from which the subsystem symmetries can be 
derived (van Smaalen, 1991 a). 

A single slab M X  has a C-centered unit cell, with 
atoms M and X alternating along a and along b (a = 
b = 6 A ,  y=90° ) .  An average structure can be 
defined with a' = b' = 3 ,~. This cell is primitive, with 
each atomic site disorderly occupied by equal 
amounts of M and X. The average structure of a 
single slab BiX in the bismuth-containing com- 
pounds is the same as in the other compounds 
(Gotoh et al., 1989; Wulff, Meetsma, Haange, de 
Boer & Wiegers, 1990). However, the real ordered 
structure is different• Instead of an ordering on a 2a' 
× 2b' lattice, observed for all other compounds, the 

unit cell of the BiX layers is 12a' x 2b' = 6a × b. This 
new unit cell is again C centered• The ordering in 
(BiSe)~.09TaSe2 is such that four Bi2 pairs occur in 
each cell, accompanied by four Sez pairs with non- 
bonding distances (Fig. 2; Zhou, Meetsma, de Boer 
& Wiegers, 1992)• The TX2 layers in the Bi-contain- 
ing compounds do have the same structure as in the 
other compounds. 

As we will show in the next section, a second 
difference between (BiSe)~.o9TaSe2 and other misfit- 
layer compounds is that the former is commensurate, 
with 12a'(BiSe) = 11 a(TaSe2). 

In this paper a study is presented of the complete 
structure of (BiSe)l.09TaSe2. The superspace for- 

i ) 
) 

6' Sel 

~0 To6 To5 To4 To3 To2 To1 
Q 

Fig. 2. Projection of the structure along a~2, displaying one unit of 
the supercell but only half a unit cell along a,2. Large circles 
denote Se atoms; small open and filled circles represent Ta and 
Bi atoms, respectively. 
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malism is applied to this commensurate misfit-layer 
compound and the relation with the classical super- 
cell approach is discussed. The commensurate modu- 
lations of both subsystems are determined. An 
analysis is made of the inter-subsystem bonding, 
which is then compared to the inter-subsystem bond- 
ing in several incommensurate misfit-layer com- 
pounds. 

E x p e r i m e n t a l  

The synthesis, unit-cell dimensions and X-ray inten- 
sity data collection have been described by Zhou, 
Meetsma, de Boer & Wiegers (1992). With neglect of 
all (commensurate) satellite reflections, the TaSe2 
subsystem (v = 1) is F-centered orthorhombic with 
lattice parameters a,l = 3.421 (1), a l e  = 5.970 (1) and 
a13=24.341 (7)A. The BiSe subsystem (v = 2) is 
primitive orthorhombic with lattice parameters a~l = 
3.135 (1), a~2 = 2.984 (1) and a ~ 3  = 12.171 (4) A. 

Satellite reflections can be indexed with respect to 
the BiSe reciprocal cell with a modulation wave- 
vector equal to the primitive (1,1,1) reciprocal-lattice 
vector of the first subsystem: q2,= (~,i,/). For this 
commensurate wavevector, the maximum order of 
the satellites is six. Rows of satellite spots h~k~l'2m'2 
are found parallel with a~'l. Those with half-integer 
values for k~ and ~ are of odd order Im~l, with 
increasing intensities for increasing order 1, 3, 5 (Fig. 
3b). Rows of even-order satellites are found for 
integer values k~ and 1~ (Fig. 3a). The second-order 
satellites have intensities comparable with the first- 
order satellites. Fourth- and sixth-order satellites are 
much weaker than the others. In addition to the 
main reflections and the fifth- and third-order 
satellites reported by Zhou, Meetsma, de Boer & 
Wiegers (1992), we have also measured the weaker 
first- and second-order satellites. 

Satellite reflections can also be indexed with 
respect to the first subsystem reciprocal cell, now 
with a modulation wavevector equal to the primitive 

t ,  a21 axis of the BiSe reciprocal lattice: ql ,2 = ( T r , 0 , 0 ) .  
Rows of satellites h ,k l l lml  are found parallel with 
a ' l ,  with all orders 1 through 5 in each row (Fig. 3). 
These two descriptions provide two equivalent four- 
integer indexings of the complete diffraction pattern. 

With the newly measured intensity data included, 
a total of 2760 reflections were measured for the 
TaSe2 subsystem. In Laue symmetry m m m  these 
reduced to 700 unique reflections, of which 635 with 
I > 30-(/) are denoted as observed. The internal con- 
sistency RI was 0.022 for observed reflections. For 
the BiSe subsystem 8594 reflections were measured, 
including satellites up to fifth order. Averaging in 
Laue symmetry m m m  resulted in 1875 unique reflec- 
tions, of which there were 1347 observed (RI=  
0.042). 

The two data sets were brought onto the same 
scale by use of 416 common reflections to derive a 
weighted average scale factor. This resulted in 2159 
unique reflections, of which there are 1615 observed. 
This data set was used in the refinements. 

The ratio of the a axes is ao--a11/a'21 = 1.09123 
with a standard deviation of 0.0004. The deviation 
from the commensurate ratio 12/ll  is 0.0003 (4), a 
much smaller difference than has been found for 
other misfit compounds. As a further test for the 
commensurateness the positions were determined of 
l0 first-order and 13 fifth-order reflections. The aver- 
age deviations from the commensurate values were 
0.0001 (4) and 0.0010 (5), respectively. This gives an 
estimate for a possible deviation from commen- 
surateness of 0.0002 (1), which is even closer to zero 
than the value obtained from the ratio of the lattice 
parameters. It is concluded that (BiSe)l.0qTaSe2 is a 
commensurate misfit compound. 
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Fig. 3. Schematic representation of the diffraction pattern. Filled 
and open symbols represent present and absent Bragg reflec- 
tions, respectively. Squares and large circles correspond to the 
main reflections of TaSe2 and BiSe, respectively. Small circles 
are satellites; their order is indicated as a TaSe2 satellite by ml 
and as a BiSe satellite by m2. The primitive reciprocal unit cell 
of the basic structure of the second subsystem is outlined. (a) A 
section of the reciprocal lattice at / -- even. (b) Section at 1 = odd 
of the c = 24/~ unit cells. For the BiSe subsystem only satellites 
are found. 
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Superceil and superspace symmetry 

To facilitate the analysis, the BiSe subsystem is 
described on the unit cell a × b × c = a' × 2b' x 2c'. 
This introduces the centering translations (0,4,0) and 
(0,0,4). With respect to the reciprocal lattice of  the 
new unit cell, the modulation wavevector for the 
second subsystem is q2 11 = (~,0,0) .  

An integer indexing of the complete diffraction 
pattern is obtained with four reciprocal vectors, M* 
= {al, a2, a3, a4}, chosen as: a* = a~'l, a* = a'z, a~ = 
a*3, and a* = a~1. Superspace is obtained in the usual 
way, by identification of the four basis vectors of M* 
with the perpendicular projection of four independ- 
ent translation vectors in a (3 + 1)-dimensional space 
(Janner & Janssen, 1980). The fourth element of M* 
can be expressed in terms of  the first three. This 
defines the incommensurability (here reduced to a 
commensurate value), expressed by the sigma matrix, 

o" = (teo,0,0). (1) 

The relation between the set M* and the subsys- 
tem reciprocal lattices and the subsystem modulation 
wavevectors is given by the matrices W ~ according to 
(van Smaalen, 1991 a) 

4 
a*i I Wikak, i = l, 2, 3, (2a) 

k = l  

4 
q~= Y~ W~ka*, (2b) 

k = l  

with 1000) (000l 
W I =  0 1 0 0 , W2= 0 I 0 0 (3) 

0 0  1 0 0 0  1 0 
0 0 0  1 1 0 0 0  

The W ~ matrices can be interpreted as defining a 
coordinate transformation in superspace. In particu- 
lar, for the reflection indices it follows that 

(H, K, L, M) = (h,, k~, l~, m~)W", (4) 

where HKLM are the indices with respect to M* and 
h , k , l , m ,  are the reflection indices with respect to A* 
and q" ( v = l ,  2). Because W l i s  chosen to be the 
unit matrix, the h~kll~ml and HKLM indices are 
identical. 

Because of the commensurability, the structure can 
also be described with respect to the common super- 
cell: a~ = l l a l l  = 12a21, bc = a12 = a22 and e~ = a13 = 

a23. The supercell diffraction indices h)cl~ can be 
derived from the four-integer indexings as he = 11H 
+ 1 2 M =  l l h ~ +  1 2 m l = 1 2 h 2 +  llm2, k ~ = K = k i =  
k2 and l~ = L = Ii =/2. 

With (4) the subsystem indexings of the reflections 
were transformed to the superspace indexing. Condi- 
tions for systematic absences were found as H + K = 

Table 1. Elements of  the superspace group G~, 
together with the corresponding elements of  both 

subsystem superspace groups G~, v = 1, 2 

The listed elements may be combined with any of the lattice 
translations or with the centering translations, hi, i= 1 .... ,4, 
assumes all integer values. The real parameters ~-~ define the 
relative position of the symmetry elements and the origin. They 
h a v e  b e e n  c h o s e n  as  z e r o .  

G, = 02 O~ 
(El  Inl,n2,n3,n4) (El  in4,n2,n3,nl ) 
(El d,Lo,o) (El 10,L0,~) 
(El  [ ~,0,~,0) (El  10,0,~,~) 
(El  ]0,~,~,0) (El  10,~,~,0) 
(mxllr~, 0,0, ~,) (mx']'l r4,0,0, ~'l) 
(2fll~l,O,r3,ra) (2,.i1~4,0,r3,~'1) 
(rn~110,0,r3,0) (m,110,0:3,0) 

2 n +  1, H + L = 2 n +  1 and K + L = 2 n +  1 for the 
HKLM reflections. This corresponds to the set of  
centering translations 

1 1 1 1 1 1 (~,~,0,0), (5) (~,0,~,0), (0,~,~,0). 

The (3 + 1)-dimensional Bravais class follows as 
P:Fmmm(ao,O,O)T11, with F representing the center- 
ing translations (5). Other extinction conditions 
could not be found. With the basic structures of the 
individual layers taken into account, the superspace 
group is determined as P:Fm2m(ao,O,O)ill. The sub- 
system superspace groups can be derived with use of 
(3) (van Smaalen, 1991a), G]=Gs and Gs 2= 
P:F'm2m(aol,0,O)lT1, with F '  representing three 
translations obtained from (5) by an interchange of 
the first and fourth components (see Table 1). The 
standard setting for the second subsystem is obtained 
by use of the primed axes. Then the superspace 
group symbol for G~ 2 becomes P:Pm2m(ao 1,4,~)Til. 
The subsystem space groups are G~ = Fm2m and G2 
= Pm2m. 

The supercell symmetry can be derived from the 
superspace group. Denote an element of the super- 
space group by (Rsl~'~)= (R3el ' r3r4),  where R 3 is the 
3 x 3 left upper block of Rs and ~'3 comprises the first 
three elements of %. This symmetry operator gives 
rise to a symmetry operator in physical space if the 
following relation is fulfilled: 

a~'-q'3 = 3" 4. (6) 

For example, for the lattice translations 
(El lnln2n3n4), where n, are integers, (6) gives 
(12/11)n~ = ha. It follows that n~ must be a multiple 
of 11, i.e. the only lattice translations in physical 
space are those corresponding to the l 1-fold super- 
cell of the TaSe2 subsystem. Application of (6) to all 
elements of G~ gives the supercell space group G,. = 
Fm2m for 3"4=(12/11)3-1 + (1 / l l )n  (mod 1). Alter- 
natively, Gc = Fm2m follows for the sections t = 
(6/11)3-1 + (1/22)n (mod 1) of superspace. All other 
values for 3-4 or t give rise to Gc = F1 l m = Fmz. The 
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orthorhombic symmetry of the diffraction pattern 
shows that the true supercell symmetry is Fm2m,  
which is one of the special sections of superspace. 

Refinements 

With respect to the subsystem lattice A~, the coordi- 
nates of atom j of subsystem v in the superspace 
section t can be written as (van Smaalen, 1991c, 
1992a) 

X~,i(J) = -Xvi(j)  + uJi('Xvs4) (7) 

for u = l ,  2 and i = l ,  2, 3. The basic structure 
c o o r d i n a t e s  "Xvi are 

Xlt(j) = nl, + x°,( j )  i = 1, 2, 3, 

-x2,(j) = n2, + x ° , ( j ) -  t, 

-xzi(j) = nzi + x°i( j )  i =  2, 3, (8) 

where n=i runs over all integers and x°,{ j)  are the 
coordinates of atom j with respect to the subsystem 
unit cell. These are the ones determined in the struc- 
ture refinement. The modulation functions are 
periodic with periodicity one in their arguments X , , s 4 .  

The latter are the fourth coordinates of the sub- 
system superspaces (van Smaalen, 1991 c, 1992a), 

Xls4 = O~021 l(j) + t, 

~'2s4 : O ~ 0 - l [ ~ ' 2 1 ( j ) -  t]. (9 )  

In the basic structure Bi and Se occupy the special 
position (0,0,z), each with probability one-half, and 
with slightly different z coordinates. The ordering as 
observed in the supercell (A = 12a~,) can be desig- 
nated as a block wave: only occupancies zero and 
one occur. For the present choice of the modulation 
wavevector, the corresponding occupational modula- 
tion functions are 

1 for 1 / 12 _ X2s4 ~-~ 2/12 (mod 1/6), 
P(Bi) = (10a) 

0 for 0 ___ X2s4 ~-~ 1 / 12 (mod 1/6), 

P(Se2) = 1 - P(Bi). (10b) 

Since the modulation is commensurate, the modula- 
tion functions are described by a Fourier series with 
a finite number of terms. The coefficients can be used 
as independent parameters in the refinement pro- 
cedure, thus providing a test for the square-wave 
ordering. Such refinements did not give a better fit 
than the model according to (10), while large corre- 
lations between the parameters did occur. Therefore, 
the structure determination was continued with the 
occupational modulation according to (10) employed 
without any free parameters. 

All atoms are on special positions: Ta is on m 2 m  
and the other three atoms are in the mirror plane mx. 

(BiSe) l.09TaSe2 

Table 2. S y m m e t r y  restrictions on the funct ions  
describing the displacive modulations 

The restrictions apply to the modula t ion  functions as defined in 
(7)-(9), with symmetry  opera tors  f rom Table  1. Fo r  each a tom it 
is stated whether  the funct ion is odd,  even or  zero. 

Ul I U22 U33 
Ta (v = 1) Odd Even Zero 
Sel (v = 1) Odd Even Even 
Bi (v = 2) Odd Even Even 
Se2 (v = 2) Odd Even Even 

Symmetry restrictions on the functions describing the 
displacive modulation follow from the corresponding 
superspace group elements. They are summarized in 
Table 2. 

Refinement parameters for the modulation func- 
tions for displacements are their Fourier coefficients 

nm 

u~,(x~s4) = Y'. A~isin(2rrn-f,s4) 
n = !  

+ B~/cos(27rn2~s4). (11) 

As for the occupational modulation functions, the 
commensurability restricts the expansion to a finite 
number of terms, nm, such that the number of 
independent parameters in the modulated-structure 
approach equals the number of parameters required 
in the supercell approach. Generally, the diffraction 
pattern shows the higher-order satellites to be very 
weak or absent. This means that the corresponding 
Fourier coefficients will be virtually zero and can be 
removed from the refinement. For the first subsys- 
tem, nm = 5. Together with the symmetry restrictions 
this leads to 11 position parameters for Ta and 17 
position parameters for Sel, the same number as is 
required in the supercell approach. In the refine- 
ments it appeared sufficient to include only harmon- 
ics up to n = 2, corresponding to 5 parameters for Ta 
and 8 parameters for Sel. This effectively reduced 
the number of refinement parameters in the super- 
space approach as compared to the supercell 
description. 

For the second subsystem, n m = 6. However, the 
special character of the occupational modulation 
requires that only 6 of the 12 possible positions are 
actually occupied. That means that the value of the 
displacement wave is only important for those 6 
values of 22s4, thus reducing nm to 3. Furthermore, 
one of the two parameters for n = 3 is redundant. 
Together with the effect of the site symmetry this 
leads to 9 position parameters each for Bi and Se2, 
the same number as is required in the supercell 
approach. All parameters were used in the 
refinements. 

Refinements were performed with the computer 
program C O M P R E F  (Petricek, Maly, Coppens et 
al., 1991) of the program system J A N A  (Petricek, 
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Table 3. Reliability factors for  the f inal f i t  

The R factors are defined as R = Y.IIFo~[- IF=~cll/Y.IFobsl and 
wR=[Yw(IFobsl- IFc~¢l)2/y.wIFob~12] ~'2, with weights w. Partial 
R factors are defined with a subset of the reflections. The TaSe2 
and BiS parts comprise the main reflections of the corresponding 
subsystem, excluding the common reflections OKLO. The BiSe 
main reflections pertain to a primitive unit cell with parameters a~ 
= 3.135, a~2 = 2.984 and a~3 = 12.171/~,. Satellites of order m are 
defined as all HKLM reflections with m = min(IHl,IMI). 

Reflection Number of 
subset reflections R w R 
All 1614 0.050 0.062 
TaSe2 part 361 0.040 0.049 
BiSe part 283 0.051 0.060 
Common 105 0.041 0.050 
m = 1 264 0.098 0.101 
m = 2 133 0.069 0.091 
m = 3 200 0.079 0.078 
m = 4 268 0.050 0.057 

Table 4. Basic structure coordinates and temperature 
parameters (/~2) as obtained by the refinement o f  the 

modulated structure 

Coordinates refer to the subsystem lattices. Standard deviations in 
the last digits are in parentheses. The temperature factor that 
appears in the expression for the structure factor is defined by 
T=exp(-2zr2~j=tUua~,a~jh.ih~j). U12 and Uj3 are zero as a 
consequence of the symmetry. 

x °, x°2 x°3 
Ta 1 0 0 0 
Sel 1 0.0 0.3340 (2) -0.06837 (5) 
Bi 2 0.0 0.0810 (5) 0.31307 (3) 
Se2 2 0.0 0.0850 (9) 0.30110 (7) 

UI1 U22 U33 UI 2 
Ta 1 0.0072 (2) 0.0034 (2) 0.0057 (2) 0 
Sel i 0.0079 (4) 0.0037 (4) 0.0071 (4) 0.0000 (3) 
Bi 2 0.0259 (3) 0.0167 (3) 0.0183 (3) 0.0006 (6) 
Se2 2 0.0238 (8) 0.0108 (6) 0.0139 (6) 0.0005 (14) 

Maly & Cisarova,  1991). The expression of  the struc- 
ture factor  in the commensura te  case is different 
f rom the expression for incommensurate ly  
modula ted  structures ( Y a m a m o t o ,  1982). The inte- 
grat ion over the fourth coordinate  is replaced by a 
summat ion  over a finite number  of  values of  2s4. The 
refinement p rog ram was modified accordingly. 

The start ing model  for the refinement was the 
structure as derived by Zhou,  Meetsma,  de Boer & 
Wiegers (1992), with the Bi/Se ordering described by 
the occupat ional  modula t ion  function (10). With the 
modula t ion  parameters  as described above and a 
single anisotropic tempera ture  tensor for each of  the 
four  independent  atoms,  smooth  convergence was 
obtained to a final w R - - 0 . 0 6 2  with R = 0 . 0 5 0 .  
Part ial  R factors for subsets of  reflections are listed 
in Table 3.* Values for the basic structure coordi- 
nates, temperature  factors and modula t ion  param-  
eters are given in Tables 4 and 5. 

With the structure obtained by Zhou,  Meetsma,  de 
Boer & Wiegers (1992) again used as a start ing point, 
a refinement in the supercell was per formed of  all 
appropr ia te  position parameters  but  with equal 
temperature  tensors for a toms equivalent  in the sub- 
system unit cell. This refinement converged to wR = 
0.061 and R = 0.049. Compar i son  of  the coordinates  
f rom the supercell refinement with the supercell coor- 
dinates obtained f rom the superspace refinement 
showed them to be equal within s tandard  deviations. 
This shows that  the superspace and supercell 
approaches  lead to the same structure model.  
Fur thermore ,  it illustrates the power  of  the super- 
space approach  for commensura te  modulat ions ,  as it 

* Lists of calculated and observed structure factors, supercell 
coordinates calculated from the modulation functions and coordi- 
nates from the supercell refinement have been deposited with the 
British Library Document Supply Centre as Supplementary Publi- 
cation No. SUP 55714 (21 pp.). Copies may be obtained through 
The Technical Editor, International Union of Crystallography, 5 
Abbey Square, Chester CH1 2HU, England. 

Table 5. Modulation parameters 

,,4 n l a ~ l  ~ Values are given for J BJ,2a,2 and BJ.3a~3 (/~), forj = Ta, Sel 
(u = 1) and for j =  Bi, Se2 (u = 2) [equation (11) and Table 2]. 
Standard deviations in the last digits are in parentheses. 

j A~, B{2 B~3 AS, B~2 A~3 A~, 
Ta -0.014 (1) -0.0303 (7) 0.0 0.000 (1) o.oo4o (12) o.o 
Sel 0.009 (2) -0.0058 (13) 0.023 (2) -0.004 (4) 0.006 (2) 0.002 (3) 
Bi -0.044(I) 0.056(3) 0.011 (2) 0.032(1) -0.057(2) 0.021 (I) 0.013(1) 
Se2 0.003 (5) -0.042 (7) -0.001 (4) -0.298 (3) -0.028 (5) -0.016 (3) 0.124 (3) 

uses less parameters  to describe the same structure as 
given in the supercell. 

Superspace refinements were also per formed with 
the expression for the structure factor  that  applies to 
incommensura te  structures. Significant differences, in 
par t icular  higher R factors,  were observed. The 
reason is probably  the block-wave character  of  the 
occupat ional  modula t ion,  which leads to quite differ- 
ent Four ier  components  in the commensura te  and 
incommensura te  cases. 

The refinements easily converged to a secondary 
minimum,  with only a slightly higher R factor  of  
0.053 as compared  with 0.050 in the true minimum.  
Between these two solutions differences in distances 
were found up to 0.1 A. In par t icular  the short  
Bi--Bi  distance was found as 3.18 A in the second- 
ary minimum,  instead of  3.10 A in the true mini- 
mum.  Zhou,  Meetsma,  de Boer & Wiegers (1992) 
obtained 3.18/~ as the Bi- -Bi  distance, which we 
believe to be a secondary min imum too. 

Discussion 

Two major  differences are found between 
(BiSe)l.oqTaSe2 and the presently known incommen- 
surate misfit-layer compounds .  In (BiSe)l.09TaSe2 the 
ordering within the BiSe subsystem is different from 
the rock-sal t- type structure (Figs. 1 and 2), and the 
ratio of  the a axes of  the two subsystems is now 
commensura te  instead of  incommensurate ,  a0 = 
12/11. 



264 (BiSe) l.o9TaSe2 

Nevertheless, the features displaying the inter- 
actions between the subsystems of (BiSe)~.09TaSe2 
closely resemble the structures of the incommen- 
surate misfit-layer, compounds. Like the incommen- 
surate compounds, the metal atoms of the BiSe 
subsystem protrude outwards such that they are 
responsible for the shortest interatomic distances 
between the subsystems. Owing to the commensur- 
ability, the infinite number of different metal-atom to 
chalcogenide distances observed in the incommen- 
surate compounds is replaced by three different Bi 
coordinations in (BiSe),.09TaSe2. 

The variation due to the modulation in the bond- 
ing distances between the six crystallographically 
independent Ta atoms and their coordinating Se 
atoms is very small. The variation in the shortest 
Ta- -Ta  distances is greater, as is to be expected, 
since these distances are longer than for a true metal 
bonding (Table 6). 

The shortest distance from a Bi atom to an Se 
atom of the other subsystem is several tenths of an 
angstrom longer than the Bi to Se distance within the 
second subsystem (Table 7). A similar effect was 
observed in the Pb- and Sn-containing misfit-layer 
compounds. This is different from the rare-earth 
misfit-layer compounds, where the intra- and inter- 
subsystem distances are of equal magnitude. It shows 
that the inter-subsystem interaction in the Bi, Pb and 
Sn compounds should be considerably weaker than 
in the other compounds. It thus explains the absence 
of charge transfer between the subsystems as meas- 
ured for (SnS)~.20TiS2 (Ettema, Wiegers, Haas & 
Turner, 1992), and inferred from transport proper- 
ties for the present compound and isostructural 
(BiSe)~.10NbSe2 (Zhou, Meetsma, de Boer & Wiegers, 
1992). 

The bond-valence method can be used to obtain a 
quantitative measure for the valences of the atoms 
(Brown, 1981; O'Keeffe, 1989). Valences were calcu- 
lated for the three crystallographically independent 
Bi atoms. Within the error boundaries, they were 
found to be equal (Table 8). Note that this includes a 
contribution to the valence of the Bil atom of a 
Bi--Bi bond valence of almost 1. Even more pro- 
nounced than for the incommensurate misfit-layer 
compounds, the effect of the modulation is to make 
the valences, i.e. the average environment, of the 
independent Bi atoms more equal (Table 8). 

For the incommensurate misfit-layer compounds 
there are an infinite number of valence values, corre- 
sponding to the infinite number of different coordi- 
nations (Coppens, Cisarova, Bu & Sommer-Larsen, 
1991; van Smaalen, 1992b). These values appeared to 
lie within a narrow range. Furthermore, the average 
over one period of the modulation can be calculated 
and a value obtained that can be compared with the 
Bi valences in the present compound (Table 9). 

Table 6. Coordination distances (A) of the six crystal- 
lographically independent Ta atoms 

D i s t a n c e s  a r e  g iven  o n l y  w i th in  the  TaSe2 s u b s y s t e m .  In  the  first  
c o l u m n  the  a p p r o x i m a t e  d i r e c t i o n s  o f  the  b o n d s  a r e  g iven .  

D i r e c t i o n  T a l  a t o m  T a 2  a t o m  T a 3  a t o m  
- a Se6 2.578 Se5 2.579 Se4 2.582 

a Se6 2.578 Se6 2.580 Se5 2.583 
b Sel 2.588 Se2 2.589 Se3 2.591 

- a Ta2 3.429 Ta3 3.426 Ta4 3.422 
a Ta2 3.429 Tal  3.429 Ta2 3.426 
b Ta6 3.386 Ta5 3.389 Ta4 3.411 
b Ta6 3.386 Ta6 3.390 Ta5 3.425 

- b Ta6 3.490 Ta5 3.472 Ta4 3.442 
- b  Ta6 3.490 Ta6 3.491 Ta5 3.477 

D i r e c t i o n  T a 4  a t o m  T a 5  a t o m  T a 6  a t o m  

- a Se4 2.582 Se3 2.579 Se2 2.576 
a Se3 2.583 Se2 2.580 Sel 2.576 
b Se4 2.593 Se5 2.595 Se6 2.597 

- a Ta3 3.422 Ta4 3.418 Ta5 3.415 
a Ta5 3.418 Ta6 3.415 Ta6 3.414 
b Ta3 3.442 Ta3 3.477 Ta2 3.491 
b Ta4 3.453 Ta2 3.472 Tal  3.490 

- b Ta4 3.453 Ta3 3.425 Ta2 3.400 
- b Ta3 3.411 Ta2 3.389 Tal  3.386 

Table 7. Interatomic distances (A) for the coordina- 
tions around the three crystallographically independent 

Bi atoms 

Se a t o m s  w i th  t w o - d i g i t  n u m b e r s  a r e  f r o m  the  s e c o n d  s u b s y s t e m ;  
Se a t o m s  wi th  s ing le -d ig i t  n u m b e r s  a r e  f r o m  the  TaSe2 s u b s y s t e m  
(Fig .  4). In  the  first c o l u m n  the  a p p r o x i m a t e  d i r e c t i o n s  o f  the  
b o n d s  a re  given.  

D i r e c t i o n  Bi l  a t o m  Bi2 a t o m  Bi3 a t o m  
- a  Bil 3.109 Se21 2.977 Se61 2.861 

a Se21 3.373 Se41 3.048 Se41 3.267 
- b Se61 2.978 Se41 3.002 Se21 2.975 

b Se61 3.048 Se41 2.990 Se21 3.043 
e Se61 2.795 Se41 2.767 Se21 2.772 

Se6 3.232 Se4 3.348 Se5 3.318 
Sel 3.564 Se3 3.385 Se2 3.431 
Se2 3.706 Se3 3.881 

According to the valences of the metal atom M, 
the misfit-layer compounds (MX)xTX2 (X = S, Se) 
can be divided into three classes. If M is a rare-earth 
element there is a tendency toward a valence of 3. 
This can be achieved by electron transfer from M to 
the dz~ band of the T atoms, a model in accordance 
with measured transport properties (Wiegers & 
Meerschaut, 1992). In addition, the more highly 
charged metal atom will form a bond with the S1 
(Sel) atoms of the TX2 subsystem, as is expressed by 
the contribution of about 1 of the inter-subsystem 
interactions to the total valence of M (Table 9). 

The second class is formed by the M = Sn, Pb 
misfit compounds. A valence slightly larger than 2 is 
calculated, with only a minor contribution from the 
inter-subsystem bonding, indicating only a weak 
interaction between the subsystems. This is in 
accordance with no significant charge transfer, as 
was found by X-ray photoelectron spectroscopy 
(Ettema, Wiegers, Haas & Turner, 1992). 
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Table  8. Valences o f  Bi as calculated with the bond- 
valence method f rom the distances in Table 7 

Valences are calculated with use of Bi to Se distances, for Se 
within the BiSe subsystem and Se in the other subsystem, and the 
total valence. For Bil, the valence is calculated (a) without and (b) 
including the contribution of the short Bil--Bil distance. Param- 
eters used are Ro= 2.720 A for Bi--Se and R0= 3.060 A for 
Bi--Bi (Brese & O'Keeffe, 1991; O'Keeffe & Brese, 1992). The last 
column gives the valences for a fictitious structure with the 
displacement modulations set to zero but with the occupational 
ordering retained. 

Own Other Basic 
subsystem subsystem Total structure 

Bi 1 (a) 1.90 0.42 2.32 2.54 
Bil (b) 2.77 0.42 3.19 3.36 
Bi2 2.74 0.35 3.09 2.82 
Bi3 2.70 0.39 3.09 2.85 

Table 9. Average value for  the valence o f  the metal  
atom M in three misfit-layer compounds 

References: (a) van Smaalen (1991c); (b) van Smaalen, Meetsma, 
Wiegers & de Boer (1991); (c) this paper, Table 8. 

Own Other 
subsystem subsystem Total 

(LaS) L ~4NbS2 (a) 2.20 0.93 3.13 
(PbS) i.tsTiS2 (b) i .96 0.29 2.21 
(BiSe)t.0oTaSe2 (c) 2.74 0.39 3.13 

The bismuth-conta in ing compounds  form a 
separate class. The small  inter-subsystem contri- 
but ion to the valence resembles that in the Pb- and 
Sn-containing compounds .  It points towards a weak 
inter-subsystem interaction and the absence of  
charge transfer, in accordance with electrical- 
t ransport  properties (Zhou, Meetsma,  de Boer & 
Wiegers, 1992). Yet the valence of  Bi is calculated to 
be 3 (Table 9), resembling the rare-earth compounds.  
Apparent ly ,  this discrepancy is resolved by the 
strong Bi - -Bi  bonding within the second subsystem. 

Concluding remarks 

(BiSe)l.o9TaSe2 is found to be a commensura te  
misfit-layer compound.  The most  convincing proof  
comes from the structure-factor calculation. The 
commensura te  approach  gives a better fit to the 
experimental  intensities than the incommensura te  
formalism. The relative posit ion of  the subsystems 
along their co-parallel a~z axes could be determined 
and was fixed to give a supercell symmetry  by the 
space group Fm2m. This contrasts with the incom- 
mensurate  misfit-layer compounds ,  for which the 
relative posit ion along the a,~ axes is a meaningless 
parameter.  

The structure was separated into two short-period 
basic structures and a modulat ion,  together defining 
the true long-period structure. Both the basic struc- 
tures and the modula t ions  were determined. It was 

shown that  refinements easily converged to a second- 
ary min imum,  characterized by a different modula-  
tion but  with an only slightly higher  R factor. The 
superspace approach required less parameters  to 
describe the same structure model  as the supercell 
approach.  Fur thermore ,  refinements starting with 
small  values for the modula t ion  parameters  always 
converged to the proper  min imum.  The power of  the 
superspace method for commensura te  modula t ions  
thus shows up both in the description of  the struc- 
ture and in the solution for the structure. 

The Bi/Se ordering differs f rom the rock-salt-type 
structure as found in the other misfit compounds  
(Zhou, Meetsma,  de Boer & Wiegers, 1992). One- 
third o f  the Bi a toms are involved in a Bi - -Bi  bond 
of  order 1. Together  with the Bi - -Se  bonds,  this 
allows for a b ismuth valence of  3, while there is no 
charge transfer and there is only a weak inter- 
subsystem interaction. Through  the bond-valence 
method it was shown that the effect o f  the modula-  
tion is towards an equal valence for all Bi atoms, of  
value about  3 (Table 8). 
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Abstract 

In this paper we develop and apply techniques for 
computation of CSL, DSCL and step-vector data for 
grain boundaries in tetragonal materials for a range 
of axial ratios. This has application to L10 alloys 
including TiA1, which is a candidate for lightweight 
high-temperature structural applications. Our results 
are compared with others and found to be more 
accurate and complete. We provide data for a wider 
range of axial ratios than those considered by pre- 
vious workers. We have also derived equivalent 
quaternions for tetragonal crystals in tetragonal- 
crystal coordinates and listed conditions for selecting 
a unique reduced rotation in tetragonal-crystal coor- 
dinates so that a disorientation description becomes 
available. 

In~oduction 

Coincidence-site lattices (CSLs) are geometrical 
models of grain-boundary structure that are formed 
by relative rotations of two congruent lattices, with a 
lattice site used as the origin. The ratio of the 
unit-cell volume of the CSL to that of the original 
lattice is usually denoted by ~. Grain boundaries 
corresponding to relatively low ~ values have been 
found to exhibit special behaviors, leading Watanabe 
(1984) to introduce the concept of grain-boundary 
design as a means of improving various properties in 
polycrystalline materials. 

In grain-bounday geometry, the displacement- 
shift-complete lattice (DSCL), which is a lattice of 
vectors representing the 'complete' displacements of 
one crystal with respect to the other and leaving the 
boundary structure shifted, is also of importance. If 
the relative orientation between two grains deviates 
by only a few degrees from a coincidence orientation 
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with a low value of ~, then it has often been 
observed that the deviation from exact coincidence is 
accommodated by arrays of DSC dislocations in the 
boundary. Knowledge of the DSCL is essential, for 
example, for the application of modern theories of 
slip transmission (Clark, Wagoner, Chen, Lee, 
Robertson & Birnbaum, 1992). 

Knowledge of the step vector associated with a 
DSC dislocation is essential in determination of the 
height of the step in the grain boundary that is 
associated with the core of a grain-boundary dislo- 
cation. The step vectors for grain-boundary dislo- 
cations in cubic crystals were determined by King 
(1982) and in h.c.p, materials by Chen & King 
(1987). Quantitative confirmation of the importance 
of step vectors in determination of the behaviors of 
grain boundaries has been given by Fukutomi, 
Kamijo & Horiuchi (1986). 

Bruggeman, Bishop & Hartt (1972) pointed out 
that three-dimensional CSLs can only be obtained in 
h.c.p, crystals when (c/a) 2 is a rational fraction, 
except for rotations about the [0001] axis. Hence it is 
necessary to constrain the real (c/a) 2 value to some 
proximate rational value to obtain a three- 
dimensional CSL, which Chen & King (1988) called 
a constrained CSL (CCSL), in order that a DSC 
lattice becomes available. The CSLs that are associ- 
ated with the [0001] rotation axis are exact CSLs 
(ECSLs). Grain-boundary dislocations whose 
Burgers vectors are appropriate DSC lattice vectors 
will accommodate deviation from a CCSL in con- 
straint as well as misorientation. The idea of con- 
strained coincidence lattices extends to all non-cubic 
lattices. In tetragonal crystals, the CSLs that are 
obtained by rotations about the [001] axis are ECSLs 
and the CSLs that are obtained for axes other than 
[001] are CCSLs. Grimmer (1989) called rotations 
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